

LT1307 Single-Cell Micropower Fixed-Frequency DC/DC Converter Needs No Electrolytic Capacitors - Design Note 128

Steve Pietkiewicz

Today's low power boost converter ICs have been rejected by designers of products incorporating RF communications for two reasons. First, the converters use some form of variablefrequency control to maintain acceptable efficiency during periods of light load. Significant spectral energy in the sensitive 455 kHz band can occur, introducing difficult interference problems with the system's IF amplifier. Second, large output capacitors are required to keep output ripple voltage at an acceptable level. Most battery-powered products have neither the space nor budget for the D-case size tantalum capacitor usually required. The LT ${ }^{\circledR} 1307$ current mode PWM switching regulator eliminates these concerns by using small, low cost ceramic capacitors for both input and output and by employing fixed frequency 575 kHz operation to keep spectral energy out of the 455 kHz band. Dense high speed bipolar process technology enables the LT1307 to fit in the subminiature MSOP package. The LT1307 consumes just $60 \mu \mathrm{~A}$ at no load and includes a low-battery detector comparator with a 200 mV reference voltage. The internal power switch is rated at 500 mA with a $V_{\text {CESAT }}$ of 300 mV .

Single-Cell Boost Converter

A complete single cell to 3.3 V converter is shown in Figure 1. The circuit generates 3.3 V at up to 75 mA from a 1 V input. The

Figure 1. Single Cell to 3.3V Boost Converter Delivers 75 mA at a 1V Input
$10 \mu \mathrm{~F}$ ceramic output capacitor can be obtained from several vendors. Efficiency, detailed in Figure 2, exceeds 70\% over the $1: 500$ load range of $200 \mu \mathrm{~A}$ to 100 mA at a 1.25 V input. Figure 3 shows output voltage and inductor current as the load current is stepped from 5 mA to 55 mA . The oscillograph reveals substantial detail about the operation of the LT1307. With a 5 mA load, $\mathrm{V}_{\text {OUT }}$ (top trace) exhibits a ripple voltage of 60 mV at 4 kHz . The device is in Burst Mode ${ }^{\text {TM }}$ operation at this output current level. Burst Mode operation enables the converter to maintain high efficiency at light loads by turning
$\overline{\mathbf{Q Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

Figure 2. 3.3V Converter Efficiency

Figure 3. Transient Response with 5mA to 55mA Load Step
off all circuitry inside the LT1307 except the reference and error amplifier. When the LT1307 is not switching, quiescent current decreases to $60 \mu \mathrm{~A}$. When switching, inductor current (middle trace) is limited to approximately 100 mA . Switching frequency inside the "bursts" is 575 kHz . As the load is stepped to 55 mA , the device shifts from Burst Mode operation to constant switching mode. Inductor current increases to about 300 mA peak and the low frequency Burst Mode ripple goes away. R1 and C3 stabilize the loop.

455kHz Noise Considerations

Switching regulator noise is a significant concern in many communication systems. The LT1307 is designed to keep noise energy out of the 455 kHz band at all load levels while consuming only $60 \mu \mathrm{~W}$ to $100 \mu \mathrm{~W}$ at no load. At light load levels, the device is in Burst Mode operation, causing low frequency ripple to appear at the output. Figure 4 details spectral noise directly at the output of Figure 1's circuit in a 1 kHz to 1 MHz bandwidth. The converter supplies a 5 mAload from a 1.25 V input. The Bust Mode fundamental at 5.1 kHz and its harmonics are quite evident, as is the 575 kHz switching frequency. Note, however, the absence of significant energy at 455 kHz . Figure 5's plot reduces the frequency span from 255 kHz to 655 kHz with a 455 kHz center. Burst Mode low frequency ripple creates sidebands around the 575 kHz switching fundamental. These sidebands have low signal amplitude at 455 kHz , measuring $-55 \mathrm{dBm} \mathrm{V}_{\text {rms }}$. As load current is further reduced, the Burst Mode frequency decreases. This spaces the sidebands around the switching frequency closer together, moving spectral energy further away from 455 kHz . Figure 6 shows the noise spectrum of the

Figure 4. Spectral Noise Plot of 3.3V Converter Delivering 5mA Load. Burst Mode Operation at 5.1 kHz is $23 \mathrm{dBm}_{\text {RMs }}$ or $14 \mathrm{mV} V_{\text {RMs }}$. Switching Fundamental at 575 kHz is $-31 \mathrm{dBm} V_{\text {RMS }}$ or $28 \mu V_{\text {RMS }}$
converter with the load increased to 20 mA . The LT1307 shifts out of Burst Mode operation eliminating low frequency ripple. Spectral energy is present only at the switching fundamental and its harmonics. Noise voltage measures $-5 \mathrm{dBm} V_{\text {RMS }}$ or $560 \mu V_{\text {RMS }}$ at the 575 kHz switching frequency, and is below $-60 \mathrm{dBm} V_{\text {RMS }}$ for all other frequencies in the range. By combining Burst Mode operation with fixed frequency operation the LT1307 keeps noise away from 455 kHz making the device ideal for RFapplications where the absence of noise in the 455 kHz band is critical.

Figure 5. Span Centered at 455 kHz Shows $-55 \mathrm{dBm} V_{\text {RMS }}\left(1.8 \mu \mathrm{~V}_{\text {RMS }}\right)$ at 455 kHz . Burst Mode Operation Creates Sidebands 5.1kHz Apart About Switching Fundamental of 575 kHz

Figure 6. With Converter Delivering 20mA, Low Frequency Sidebands Disappear. Noise is Present Only at the 575 kHz Switching Frequency and its Harmonics

For literature on our DC/DC Converters, call 1-800-4-LINEAR. For applications help, call (408) 432-1900, Ext. 2361

